ZHANG Chuanzhe, MA Zhanxin. Chain Network DEA Method Based on Generalized Nearest Distance Projection[J]. Operations Research and Management Science, 2025, 34(6): 86-92.
[1] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444. [2] KAO C. Decomposition of slacks-based efficiency measures in network data envelopment analysis[J]. European Journal of Operational Research, 2020, 283(2): 588-600. [3] 郭文,孙涛,朱建军.基于最大有效面集的网络SBM评价模型及其应用[J].控制与决策,2014,29(12):2282-2286. [4] 郭文,孙涛,朱建军,等.关联多阶段生产系统的网络SBM效率评价方法[J].系统工程,2017,35(1):151-158. [5] APARICIO J, RUIZ J L, SIRVENT I. Closest targets and minimum distance to the Pareto-efficient frontier in DEA[J]. Journal of Productivity Analysis, 2007, 28(3): 209-218. [6] KAO C, A maximum slacks-based measure of efficiency for closed series production systems[J]. Omega, 2022, 106: 102525. [7] LI X C, LI F, ZHAO N G, et al. Measuring environmental sustainability performance of freight transportation seaports in China: A data envelopment analysis approach based on the closest targets[J]. Expert Systems, 2020, 37(4): e12334. [8] 李峰,朱平,梁樑,等.基于最近距离投影的DEA两阶段效率评价方法研究[J].中国管理科学,2022,30(10):198-209. [9] ANDO K, KAI A, MAEDA Y, et al. Least distance based inefficiency measures on the Pareto-efficient frontier in DEA[J]. Journal of the Operations Research Society of Japan, 2012, 55(1): 73-91. [10] FUKUYAMA H, MAEDA Y, SEKITANI K, et al. Input-output substitutability and strongly monotonic p-norm least distance DEA measures[J]. European Journal of Operational Research, 2014, 237(3): 997-1007. [11] ZHU Q Y, WU J, JI X, et al. A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity[J]. Omega, 2018, 79: 1-8. [12] 马占新.广义数据包络分析方法[M].北京:科学出版社,2012.