[1] 郭娜,王少严,胡佳琪.房地产价格、金融稳定与宏观审慎监管—基于NK-DSGE模型的研究[J].武汉金融,2022(6):3-12. [2] 杨源源,贾鹏飞,高洁超.中国房地产长效调控范式选择:房产税政策还是宏观审慎政策[J].财贸经济,2021,42(8):53-66. [3] 冯明.国民经济核算视角下中国居民消费率的因素分解研究—对“消费能力说”和“消费意愿说”的定量考察[J].数量经济技术经济研究,2023,40(5):180-201. [4] ELLINGTON M, FU X, ZHU Y. Real estate illiquidity and returns: A time-varying regional perspective[J]. International Journal of Forecasting, 2023, 39(1): 58-72. [5] 代婉瑞,宋良荣.商业银行数字化转型与信用风险经济资本管理:研究综述与展望[J].财会月刊,2022(15):130-137. [6] XIAO P, SALLEH M I, ZAIDAN B B, et al. Research on risk assessment of blockchain-driven supply chain finance: A systematic review[J]. Computers & Industrial Engineering, 2023,176: 108990. [7] WU D D, OLSON D. Enterprise risk management: A DEA VaR approach in vendor selection[J]. International Journal of Production Research, 2010, 48(16): 4919-4932. [8] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444. [9] LIU J S, LU L Y Y, LU W M. Research fronts in data envelopment analysis[J]. Omega, 2016, 58: 33-45. [10] ANDERSEN P, PETERSEN N C. A procedure for ranking efficient units in data envelopment analysis[J]. Management Science, 1993, 39(10): 1261-1264. [11] 罗春婵,尤秋爽,何代弟.公司治理异质性与商业银行风险约束效率[J].金融与经济,2021(3):21-29. [12] SHI S, TSE R, LUO W, et al. Machine learning-driven credit risk: A systemic review[J]. Neural Computing & Applications, 2022, 34(17): 14327-14339. [13] DUAN C Y, CHEN X Q, SHI H, et al. A new model for failure mode and effects analysis based on k-means clustering within hesitant linguistic environment[J]. IEEE Transactions on Engineering Management, 2019, 69(5): 1837-1847. [14] OSMAN A, SHEHADEH M. Risk assessment of interstate pipelines using a fuzzy-clustering approach[J]. Scientific Reports, 2022, 12(1): (Article)13750. [15] D’URSO P. Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review[J]. Information Sciences, 2017, 400: 30-62. [16] ZHU Y, TING K M, CARMAN M J. Grouping points by shared subspaces for effective subspace clustering[J]. Pattern Recognition, 2018, 83: 230-244. [17] LIU C, XIE J, ZHAO Q, et al. Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment[J]. Expert Systems with Applications, 2019, 138: 112827. [18] MA S, LYU S, ZHANG Y. Weighted clustering-based risk assessment on urban rainstorm and flood disaster[J]. Urban Climate, 2021, 39: 100974. [19] SONG Y, WANG Y, YE X, et al. Multi-view ensemble learning based on distance-to-model and adaptive clustering for imbalanced credit risk assessment in P2P lending[J]. Information Sciences, 2020, 525: 182-204. [20] 周开乐,杨善林,丁帅,等.聚类有效性研究综述[J].系统工程理论与实践,2014,34(9):2417-2431. [21] PARVIN H, MINAEI-BIDGOLI B. A clustering ensemble framework based on elite selection of weighted clusters[J]. Advances in Data Analysis and Classification, 2013, 7: 181-208. |