[1] Kumah F, Anebo G. The adoption of environmental policy innovation: water pollution permits trading in the united states[D]. Southern Illinois University Carbondale, 2005. [2] James J M, John K S. Direct and market effects of enforcing emission trading programs: an experimental analysis[J]. Journal of Economic Behavior and Organization, 2006, 61(2): 217-233. [3] 卢方元.环境污染问题的演化博弈分析[J].系统工程理论与实践,2007,27(9):148-152. [4] 杜娜,曹东,杨慧芬.工业企业大气污染治理费用函数的研究[J].科学技术与工程,2007,7(6):1116-1118+1127. [5] 曹东,宋存义,王金南,等.污染物联合削减费用函数的建立及实证分析[J].环境科学研究,2009,22(3):371-376. [6] 崔亚飞,刘小川.中国地方政府间环境污染治理策略的博弈分析-基于政府社会福利目标的视角[J].理论与改革,2009,6(6):6 2-65. [7] 潘峰,西宝,王琳.基于演化博弈的地方政府环境规制策略分析[J].系统工程理论与实践,2015,35(6):1393-1404. [8] 刘洋,万玉秋.跨区域环境治理中地方政府间的博弈分析[J].环境保护科学,2010,36(1):34-36. [9] Zhao Laijun, Li Changmin , Huang Rongbing ,et al. Harmonizing model with transfer tax on water pollution across regional boundaries in a China’s lake basin[J]. European Journal of Operational Research, 2013, 225(2): 377-382.[10] 梁昌勇,叶春森.基于努力和赔偿成本分摊机制的云服务供应链协调[J].中国管理科学,2015,23(5):82-88. [11] Sechi G M, Zucca R, Zuddas P. Water costs allocation in complex systems using a cooperative game theory approach[J]. Water Resources Management, 2013, 27(6): 1781-1796. [12] Zhao Laijun, Huang Wei, Gao H O. A cooperative approach to reduce water pollution abatement cost in an interjurisdictional lake basin[J]. Journal of The American Water Resources Association, 2014, 50(3): 777-790. [13] Halkos G E. Optimal abatement of sulphur emission in Europe[J]. Environmental and Resource Economics, 1994, 4(2): 127-150. [14] Dan Wu , Yuan Xu , Shiqiu Zhang. Will joint regional air pollution control be more cost-effective an empirical study of China’s beijing tianjin hebei region[J]. Journal of Environmental Management, 2015, 149(1): 27-36. [15] Petrosjan L,Zaccour G. Time consistent shapley value allocation of pollution cost reduction[J]. Journal of Economic Dynamics and Control, 2003, 27(3): 381-398. [16] Aubin J P. Cooperative fuzzy games[J]. Mathematical Operation Research, 1981, 6(1): 1-13. [17] Butnariu D, Klement E P. Core,value and equilibria for market games: on a problem of aumann and shapley[J]. International Journal of Game Theory, 1996, 25(2): 149-160. [18] Tsurumi M, Tanino T, Inuiguchi M. A shapley function on a class of cooperative fuzzy games[J]. European Journal of Operational Research, 2001, 129(3): 596-618. [19] 孙红霞,张强.具有模糊联盟博弈的Shapley值的刻画[J].系统工程理论与实践,2010,30(8):1457-1464. [20] Li S J, Zhang Q. A reduced expression of the shapley function for fuzzy game[J]. European Journal of Operational Research, 2009, 196(1): 234-245. |