[1] Bhimani et al. Owner liability and financial reporting information as predictors[J]. Review of Accounting Studies, 2014, 19:769-804. [2] Jabeur S B, Sadaaoui A, Sghaier A, et al. Machine learning models and cost-sensitive decision trees for bond rating prediction[J]. Journal of the Operational Research Society, 2019: 1-19. [3] Xia Y, Liu C, Li Y Y, et al. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems with Applications, 2017, 78: 225-241. [4] Monika Papouskova, Petr Hajek. Two-stage consumer credit risk modelling using heterogeneous ensemble learning[J]. Decision Support Systems, 2019, 118: 33-45. [5] Lai Tian L, Schisterman E F. Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point[J]. Computational Statistics & Data Analysis, 2012, 56(5): 1103-1114. [6] Molanes-López and E. Letón. Inference of the Youden index and associated threshold using empirical likelihood for quantiles[J]. Statistics in Medicine, 2011, 30(19): 2467-2480. [7] Lopezraton M, Cadarsosuarez C, Molaneslopez E M, et al. Confidence intervals for the symmetry point: an optimal cutpoint in continuous diagnostic tests[J]. Pharmaceutical Statistics, 2016, 15(2): 178-192. [8] Zhang Z, Gao G, Shi Y, et al. Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors[J]. European Journal of Operational Research, 2014, 237(1): 335-348. [9] Tomczak J M, Zięba M. Classification restricted Boltzmann machine for comprehensible credit scoring model[J]. Expert Systems with Applications. 2015, 42(4): 1789-1797. [10] Perols J L, Bowen R M, Zimmermann C, et al. Finding needles in a haystack: using data analytics to improve fraud prediction[J]. The Accounting Review, 2017, 92(2): 221-245. [11] 柳向东,李凤.大数据背景下网络借贷的信用风险评估——以人人贷为例[J].统计与信息论坛,2016,31(05):41-48. [12] 陈林,谢彦妩,李平,李强.借款陈述文字中的违约信号——基于P2P网络借贷的实证研究[J].中国管理科学,2019,27(04):37-47. |