1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 2. School of Economics and Management, South China Normal University, Guangzhou 510006, China; 3. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
KONG Qianqian, HAN Weibin, XU Genjiu. General Core and Its Axiomatic Characterization[J]. Operations Research and Management Science, 2023, 32(3): 227-232.
[1] GILLIES D B. Some theorems θn-person games[M]. Princeton, New Jersey: Princeton University Press, 1953. [2] GROTTE J H. Computation of and observations on the nucleolus, the normalized nucleolus, and the central games[M]. Cornell University, September, 1970. [3] SUDHÖLTER P. The modified nucleolus: properties and axiomatizations[J]. International Journal of Game Theory, 1997, 26(2): 147-182. [4] TARASHNINA S. The simplified modified nucleolus of a cooperative TU-game[J]. Top, 2011, 19(1): 150-166. [5] HOU D S, SUN P F, XU G J, et al. Compromise for the complaint: an optimization approach to the ENSC value and the CIS value[J]. Journal of the Operational Research Society, 2018, 69(4): 571-579. [6] HOU D S, LARDON A. An optimization characterization of the upper optimal complaint value[J]. Economics Letters, 2020, 186: 108864. [7] SAKAWA M, NISHIZAKI I. A lexicographical solution concept in an n-person cooperative fuzzy game[J]. Fuzzy Sets and Systems, 1994, 61(3): 265-275. [8] VANAM K C, HEMACHANDRA N. Some excess-based solutions for cooperative games with transferable utility[J]. International Game Theory Review, 2013, 15(4): 1340029. [9] KONG Q Q, SUN H, XU G J, et al. The general prenucleolus of n-person cooperative fuzzy games[J]. Fuzzy Sets and Systems, 2018, 349: 23-41. [10] SUN P F, HOU D S, SUN H, et al. Optimization implementation and characterization of the equal allocation of nonseperable costs value[J]. Journal of Optimization Theory and Applications, 2017, 173(1): 336-352. [11] SUN P F, HOU D S, SUN H, et al. Process and optimization implementation of the α-ENSC value[J]. Mathematical Methods of Operations Research, 2017, 86(2): 293-308. [12] ALBIZURI M J, SUDHÖLTER P. Characterizations of the core of TU and NTU games with communication structures[J]. Social Choice and Welfare, 2016, 46(2): 451-475. [13] MYERSON R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2(3): 225-229. [14] AUMANN R J, DREZE J H. Cooperative games with coalition structures[J]. International Journal of Game Theory, 1974, 3(4): 217-237. [15] SCARF H E. The core of an n-person game[J]. Econometrica, 1967, 35(1): 50-69. [16] SHAPLEY L S. Additive and non-additive set functions[M]. PhD Thesis, Princeton University, 1953a. [17] SHAPLEY L S. A value for n-person games[M]. In: Kuhn H, Tucker A.(Eds.), Contributions to the Theory of Games, Princeton University Press, 1953b, pp: 307-317. [18] MARTÍNEZ-LEGAZ J E. Dual representation of cooperative games based on fenchel-moreau conjugation[J]. Optimization, 2013, 36(4): 291-319. [19] SCHMEIDLER D. The nucleolus of a characteristic function game[J]. SIAM Journal on Applied Mathematics, 1969, 17(6): 1163-1170. [20] MASCHLER M, POTTERS J A M, TIJS S H. The general nucleolus and the reduced game property[J]. International Journal of Game Theory, 1992, 21(1): 85-106. [21] SÁNCHEZ-RODRÍGUEZ E, BORM P, ESTÉVEZ-FERNÉNDEZ A, et al. k-core covers and the core[J]. Mathematical Methods of Operations Research, 2015, 81(2):147-167.