[1] 李倩,肖燕妮,吴建宏,等.COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析[J].应用数学学报,2020,43(02):238-250. [2] 范如国,王奕博,罗明,等.基于SEIR的新冠肺炎传播模型及拐点预测分析[J].电子科技大学学报,2020,49(03):369-374. [3] 周涛,刘权辉,杨紫陌,等.新型冠状病毒肺炎基本再生数的初步预测[J].中国循证医学杂志,2020,20(03):359-364. [4] 白宁,宋晨玮,徐瑞.基于动力学模型的COVID-19疫情预测与控制策略研究[J].应用数学学报,2020,43(03):483-493. [5] 李冀鹏,洪峰,白薇,等.评估新型冠状病毒地区防控效果的一种近似方法[J].物理学报,2020,69(10):99-106. [6] Ruan L, Wen M, Zeng Q, et al. New measures for COVID-19 response: a lesson from the wenzhou experience[J]. Clinical Infectious Diseases, 2020 Apr 3; ciaa386. doi: 10.1093/cid/ciaa386. [7] Rajan D, Koch K, Rohrer K, et al. Governance of the Covid-19 response: a call for more inclusive and transparent decision-making[J]. British Medical Journal Global Health, 2020, 5(5): 2655. [8] Gao X, Yu J. Public governance mech-anism in the prevention and control of the COVID-19: information, decision-making and execution[J]. Journal of Chinese Governance, 2020, 178-197. [9] Matthew Sperrin, Stuart W Grant, Niels Peek. Prediction models for diagnosis and prognosis in Covid-19[J]. BMJ, 2020, 369: m1464. [10] Mangiarotti S, Peyre M, Zhang Y, Huc M, Roger F, Kerr Y. Chaos theory applied to the outbreak of Covid-19: an ancillary approach to decision-making in pandemic context[J]. Epidemiology and Infection, 2020, 148: 1-29. [11] 王宁,郭玮,路国粹.基于应急案例的情景决策支持方法研究[J].运筹与管理,2017,26(01):68-75. [12] Karnon J. A simple decision analysis of a mandatory lockdown response to the COVID-19 pandemic[J]. Applied Health Economics and Health Policy, 2020, 18: 329-331. [13] Martino J P. The delphi method: tech-niques and applications[J]. Technologic-al Forecasting Social Change, 1976, 8(4): 441-442. [14] 韩明.FTA法和重要度分析在某系统可靠性中的应用[J].运筹与管理,2000(01):58-63. [15] 刘洋,樊治平,尤天慧,王晓荣.基于故障树分析的堰塞湖溃坝概率估计方法[J].运筹与管理,2017,26(07):138-146. [16] Figueira José, Greco S, Ehrgott M. Multiple criteria decision analysis: state of the art surveys[M]. Springer New York, 2005. |