[1] Fan J, Zhang J, Yu K. Vast portfolio selection with gross-exposure constraints[J]. Journal of the American Statistical Association, 2012, 107(498): 592-606. [2] Buser S A. Mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix[J]. Journal of Financial and Quantitative Analysis, 1977, 12(3): 347-361. [3] Ryan P J, Lefoll J. A comment on mean-variance portfolio selection with either a singular or nonsingular variance-covariance matrix[J]. Journal of Financial and Quantitative Analysis, 1981, 16(3): 389-395. [4] Szeg G P. Portfolio theory: with application to bank asset management[M]. New York: Academic Press, 1980. [5] VRS J. The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity[J]. European Journal of Operational Research, 1987, 32(2): 302-310. [6] Korki B, Turtle H J. A note on the analytics and geometry of limiting mean-variance investment opportunity sets[J]. Review of Quantitative Finance and Accounting, 1997, 9(3): 289-300. [7] 史树中,杨杰.证券组合选择的有效子集[J].应用数学学报,2002,25(1):176-186. [8] 姚海祥,易建新,李仲飞.奇异方差-协方差矩阵的n种风险资产有效边界的特征[J].数量经济技术经济研究,2005,22(1):107-113. [9] 苏咪咪,叶中行.协方差矩阵奇异情况下的最优投资组合[J].应用概率统计,2005,21(3):244-248. [10] 蒋春福,戴永隆.奇异协方差阵下有效前沿及有效组合的解析解[J].系统科学与数学,2008,28(9):1134-1147. [11] Zhang S M, Wang S Y, Deng X T. Portfolio selection theory with different interest rates for borrowing and lending[J]. Journal of Global Optimization, 2004, 28(1): 67-95. [12] Dunne T T, Stone M. Downdating the moore-penrose generalized inverse for cross-validation of centred least squares prediction[J]. Journal of the Royal Statistical Society: SeriesB, 1993, 55(2): 369-375. [13] 蒋春福,戴永隆.奇异协方差阵下证券组合的有效子集[J].应用概率统计,2008,24(5):484-492. |