[1] Murthy D N P, Xie M, Jiang R. Weibull Models[M]. Hoboken, New Jersey: John Wiley & Sons, 2003. [2] Yang G L. Application of renewal theory to continuous sampling plans[J]. Naval Research Logistics, 1985, 32(1): 45-51. [3] Frees E W. Warranty analysis and renewal function estimation[J]. Naval Research Logistics, 1986, 33(3): 361-372. [4] Jin T, Gonigunta L. Weibull and gamma renewal approximation using generalized exponential functions[J]. Communications in Statistics-Simulation and Computation, 2008, 38(1): 154-171. [5] Brezavšček A. A simple discrete approximation for the renewal function[J]. Business Systems Research, 2013, 4(1): 65-75. [6] 黄卓,郭波.更新理论推理过程及其应用[J].数学的实践与认识,2006,36(9):200-204. [7] 刘金兰,刘立旺.保证成本的统计估计[J].工业工程,2003,6(4):39-42. [8] 刘灿齐.更新过程理论在交通流上的一个应用[J].数学的实践与认识,1999,29(3):47-51. [9] Jiang R. A simple approximation for the renewal function with an increasing failure rate[J]. Reliability Engineering and System Safety, 2010, 95(9): 963-969. [10] Spearman M L . A simple approximation for IFR weibull renewal functions[J]. Microelectronics Reliability, 1989, 29(1): 73-80. [11] Jiang R. Two approximations of renewal function for any arbitrary lifetime distribution[J]. Annals of Operations Research. Annals of Operations Research, 2019: 1-15. [12] Jiang R. A novel two-fold sectional approximation of renewal function and its applications[J]. Reliability Engineering and System Safety, 2020, 193: 106624. [13] Parsa H, Jin M. An improved approximation for the renewal function and its integral with an application in two-echelon inventory management[J]. International Journal of Production Economics, 2013, 146(1): 142-152. [14] Cui L, Xie M. Some normal approximations for renewal function of large weibull shape parameter[J]. Communications in Statistics. B, Simulation and Computation, 2003, 32(1): 1-16. [15] Jiang R. A Gamma-normal series truncation approximation for computing the Weibull renewal function[J]. Reliability Engineering and System Safety, 2008, 93(4): 616-626. [16] 康志荣,闫玉斌.更新理论积分方程的解析解[J].应用概率统计,2000,16(2):125-132. [17] Jiang R, Chen Z G. A practical approximation of Weibull renewal function for solving relevant optimization problems[J]. Quality Engineering, LQEN 1747628, https://doi.org/10.1080/08982112.2020.1747628. [18] Misra. Handbook of advanced performability engineering[M]. Switzerland:Springer, Cham,549-563 [19] Nakagawa T. Stochastic processes[M]. London: Springer-Verlag, 2011: 47-93. [20] Xie M. On the solution of renewal-type integral equations[J]. Communication in Statistics——Simulation and Computation, 1989, 18(1): 281-293. [21] Dohi T, Kaio N, Osaki S. Renewal processes and their computational aspects[M]. In Stochastic Models In Reliability and Maintenance, Berlin: Springer, 2002. [22] Baker R D. A nonparametric estimator of the renewal function[J]. Computers and Operations Research, 1993, 20(2): 167-178. [23] Jiang R, Murthy D N P. Maintenance: decision models for management[M]. Beijing: Science Press, 2008. |