运筹与管理 ›› 2017, Vol. 26 ›› Issue (3): 1-6.DOI: 10.12005/orms.2017.0051

• 理论分析与方法探讨 •    下一篇

基于时间敏感产品的多厂商供应链管理

林贵华1, 王艳茹1, 朱希德2   

  1. 1.上海大学 管理学院,上海 200444;
    2.横滨国立大学 国际社科研究院,日本 横滨 240-8501
  • 收稿日期:2014-11-08 出版日期:2017-03-25
  • 作者简介:林贵华(1967-),男,博士,教授。
  • 基金资助:
    国家自然科学基金面上项目(11671250);上海市教委科研创新基金重点项目(14ZS086);教育部人文社会科学研究一般项目(15YJA630034)

Supply Chain Management with Time-Sensitive Products and Multiple Manufacturers

LIN Gui-hua1, WANG Yan-ru1, ZHU Xi-de2   

  1. 1.School of Management, Shanghai University, Shanghai 200444, China;
    2.International Graduate School of Social Sciences, Yokohama National University, Yokohama 240-8501, Japan
  • Received:2014-11-08 Online:2017-03-25

摘要: 本文主要研究基于时间敏感产品的多厂商供应链网络模型。在该模型中,每个厂商都希望自己的运营成本和时间消耗最少,但目标函数和约束条件都受到竞争对手决策的影响,因此属于广义纳什均衡问题的范畴。在过去的文献中,这类问题通常被转化成一般形式的变分不等式来处理。本文中,注意到模型中所涉及的约束函数都是线性函数,我们将问题转化成混合互补系统来求解。与一般形式的变分不等式问题相比,混合互补系统要容易处理得多。借助于所谓Fischer-Burmeister函数,我们将混合互补系统转化成非线性方程组,然后利用半光滑牛顿法进行求解。初步的数值实验表明,本文提出的方法是切实可行的。

关键词: 供应链, 时间敏感产品, 广义纳什均衡, 混合互补系统, 半光滑牛顿法

Abstract: This papermainly studies a supply chain network with time-sensitive products and multiple manufacturers, in which each manufacturer hopes to minimize his operational cost and time consumption and, however, both the objective function and the constraints are dependent of the rivals’ decisions. Therefore,the model considered in this paper is essentially a generalized Nash equilibrium problem. In the exsiting works,the model is usually transformed into a general variational inequality problem. In this paper, based on the observation that allconstraints involved in the network are affine, we transform the model as amixed complementarity system. Compared with the general variational inequality problems, the mixed complementarityproblems are evidently much easier to solve. We make use of the well-known Fischer-Burmeister function to reformulate the mixed complementarity system as nonlinear equations and employ a semismooth Newton method to solve it. Preliminary numerical exampleindicates that the proposed approach is promising.

Key words: supply chain network, time-sensitive product, generalized nash equilibrium, mixed complementarity system, semismooth Newton method

中图分类号: