[1] Fu T. A review on time series data mining[J]. Engineering Application of Artificial Intelligence, 2011, 24: 164-181. [2] Dong X L, Gu C K, Wang Z O. Research on shape-based time series similarity measure[C]. Proceeding of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, 2006: 1253-1258. [3] Zhang Z, Liu X Y, Wang H Q. Discovery in stock time series based on perceptually important point algorithm[C]. Proceeding of International Systems Conference, San Diego, La, USA, 2006. [4] Fu T, Chung F L, Luk R, et al. Representing financial time series based on data point importance[J]. Engineering Applications of Artificial Intelligence, 2008, 21: 277-300. [5] 刘懿,鲍德沛,杨泽红等.新型时间序列相似性度量方法研究[J].计算机应用研究,2007,(5):112-114. [6] Dattasharma A, Tripathi P K, Gangadharpalli S. Identifying stock similarity based on episode distance[C]. 11th International Conference on Computer and Information Technology, Khulna, 2008: 28-35. [7] 刘威,邵良杉,曾繁慧等.基于SAX方法的股票时间序列数据相似性度量方法研究[J].计算机工程与科学,2009,31(9):115-118. [8] 崔靖,赵秀娟,宋吟秋.中日股价序列相似性的比较分析[J].系统工程理论与实践,2009,29(12):125-133. [9] 倪丽萍,倪志伟.一种基于趋势分形维数的股指时间序列相似性分析方法[J].系统工程理论与实践,2012,32(9):1900-1907. [10] Gavrilov M, Anguelov D, Indyk P, et al. Mining the stock market: which measure is best [C]. Proceeding of the KDD, Boston, Ma, USA, 2000. 487-496. [11] Mandelbort B. The fractal geometry of nature[M]. New York: Freeman, 1982. [12] Edgar Peter. Chaos and order in the capital markets[M]. John Wiley & Sons, Inc, 1996. [13] Mandelbort B. Fractal and scaling in finance: discontinuity concentration, risk[M]. New York: Springer, 1998. [14] Everetsz C J G. Fractal geometry of financial time series[J]. Fractals, 1995, 3: 609-616. [15] Andreadis, Self-criticality and stochasticity of an S&P 500 index time series[J]. Chaos, Solitions and Fractal, 2000, 11: 1047-1059. [16] Barabasi A, Vicsek T. Multifractality of self-affine fractals[J]. Physica A, 1991, 44: 2730-2733. [17] Davis A, Marshak A, Wiscombe W, Cahalan R. Multifractal characterization of intermittency in nonstationary geophysical signals and fields. In: Trevino G, Harding J, Douglas B, Andreas E. Current Topics in Nonstationary Analysis. World Scientific, Singapore, 1996: 97-158. [18] Koscielny B E, Kantelhardt J W, Braun P, et al. Long-term persistence and multifractal of river runoff records: detrended fluctuation studies[J]. Journal of Hydrology, 2006, 322: 120-137. [19] 高红兵,潘瑾,陈宏民.深圳成份股指数收益率序列的分形维[J].预测,2000,(6):50-51. [20] 徐绪松,陈彦斌.深沪股市分形维实证研究[J].数量经济技术经济研究,2000,(11):59- 61. [21] 熊正丰.金融时间序列分形维估计的小波方法[J].系统工程理论与实践,2002,(12):48-53. [22] 庄新田,黄小原.证券市场的标度理论及实证研究[J].系统工程理论与实践,2003,(3):1-9. [23] 范英,魏一鸣.基于R/S分析的中国股票市场分形特征研究[J].系统工程,2004,22(11):46-51. [24] 宿成建,缪晓波,刘星.中国证券市场的非线性特征与分形维分析[J].系统工程理论与实践,2005,(5):68-73. [25] 苑莹,庄新田.金融时间序列的标度特性实证研究[J].管理工程学报,2008,(2):85- 89. [26] 许文坤,张卫国.金融时间序列分形维参数估计方法比较及应用[J].系统工程,2011,29(7):11-18. [27] 何建敏,常松.中国股票市场多重分形游走及其预测[J].中国管理科学,2002,10(3):11-17. [28] 胡雪明,宋学峰.深沪股票市场的多重分形分析[J].数量经济技术经济研究,2003,(8):124-127. [29] 吴文峰,黄登仕,吴冲锋.中国股票市场的多标度特征[J].数量经济技术经济研究,2003,(9):112-115. [30] 卢方元.中国股票市场收益率的多重分形分析[J].系统工程理论与实践,2004,(6):50-54. [31] 施锡铨,艾克风.股票市场风险的多重分形分析[J].统计研究,2004,(9):33-36. [32] 苑莹,庄新田,金秀.基于MF-DFA的中国股票市场多标度特性及成因分析[J].管理工程学报, 2009,(4):96-99. [33] Gopikrishnan P, Plerou V, Liu Y, et al. Scaling and correlation in financial data[J]. Physica A, 2000, 287: 362-373. [34] Last M, Klein Y. Knowledge discovery in time series databases[J]. IEEE Trans on System Man and Cybernetics-part b, 2001, 31(1): 160-169. [35] Edger E P. Chaos and order in the capital market[M]. Economic Science Press, 1999: 64- 83. [36] Andreadis J, Serletis A. Evidence of a random multifractal turbulent structure in the dow jones industrial average[J]. Chaos, Solitions and Fractals, 2002, 13: 1309-1315. [37] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316(1- 4): 87-114. [38] Bonzo D C, Hennoeilla A Y. Clustering panel data via perturbed adaptive simulated annealing and genetic algorithms[J]. Advances in Complex System, 2004, 4: 339-360. [39] Ren J, Shi S L. Multivariable panel data ordinal clustering and its application in competitive strategy identification of appliance-wiring listed companies[C]. International Conference on Management Science & Engineering(16th), Moscow, Russia, 2009: 253-258. [40] 朱建平,陈民恳.面板数据的聚类分析及其应用[J].统计研究,2007,24(4):11-14. [41] 郑兵云.多指标面板数据的聚类分析及其应用[J].数理统计与管理,2008,27(2):265-270. [42] 陈可,刘思峰.灰色关联度在面板数据中的拓展及应用[J].系统工程理论与实践,2010,30(7):1253-1259. [43] 李因果,何晓群.面板数据聚类方法及应用[J].统计研究,2010,27(9):73-77. [44] 黄德才,李秉焱.AHP群决策的几何平均超传递近似法[J].控制与决策,2012,(5):797- 800. |