[1] Mirchandani P B, Francis R L. Discrete location theory. New York: John Wiley and Sons, Inc., 1990.
[2] Jakob K, Pruzan P M. The simple plant location problem: survey and synthesis. European Journal of Operational Research, 1983, 12(1): 36-81.
[3] Tarantola A. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, 2005.
[4] Heuberger C. Inverse combinatorial optimization: a survey on problems, methods, and results. Journal of Combinatorial Optimization, 2004, 8(3): 329-361.
[5] Ahuja R K, Orlin J B. Inverse optimization. Operations Research, 2001, 49(5): 771-783.
[6] Cai M C, Yang X G, Zhang J Z. The complexity analysis of the inverse center location problem. Journal of Global Optimization, 1999, 15(2): 213-218.
[7] Schaefer A J. Inverse integer programming. Optimization Letters, 2009, 3(4): 483-489.
[8] Alizadeh B, Burkard R E, Pferschy U. Inverse 1-center location problems with edge length augmentation on trees. Computing, 2009, 86(4): 331.
[9] Guan X, Zhang B. Inverse 1-median problem on trees under weighted hamming distance. Journal of Global Optimization, 2012, 54(1): 75-82.
[10] Berman O, Ingco D I, Odoni A. Improving the location of minimax facilities through network modification. Networks, 1994, 24(1): 31-41.
[11] Zhang J, Liu Z, Ma Z. Some reverse location problems. European Journal of Operational Research, 2000, 124(1): 77-88.
[12] Ghosh D. Neighborhood search heuristics for the uncapacitated facility location problem. European Journal of Operational Research, 2003, 150(1): 150-162. |