[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European journal of operational research, 1978, 2(6): 429-444. [2] 杨德权,裴金英.基于超效率DEA-IAHP的物流企业绩效评价[J].运筹与管理,2012,21(1):189-194. [3] 陈燕武.基于复合DEA和Malmquist指数的科技投入产出效率评价[J].运筹与管理,2011,6:196-204. [4] 董锋,刘晓燕,龙如银.基于三阶段DEA模型的我国碳排放效率分析[J].运筹与管理,2014,23(4):196-205. [5] Sexton T R, Silkman R H, Hogan A J. Data envelopment analysis: critique and extensions[J]. New Directions for Program Evaluation, 1986, 1986(32): 73-105. [6] Doyle J, Green R. Efficiency and cross-efficiency in DEA: derivations, meanings and uses[J]. Journal of the operational research society, 1994, 45(5): 567-578. [7] Zhou Z, Lui S, Ma C. Fuzzy data envelopment analysis models with assurance regions: a note[J]. Expert Systems with Applications, 2012, 39(2): 2227-2231. [8] Wu J, Sun J, Liang L. Determination of weights for ultimate cross efficiency using shannon entropy[J]. Expert Systems with Applications, 2011, 38(5): 5162-5165. [9] Falagario M, Sciancalepore F, Costantino N. Using a DEA-cross efficiency approach in public procurement tenders[J]. European Journal of Operational Research, 2012, 218(2): 523-529. [10] Wu J, Sun J, Liang L. Cross efficiency evaluation method based on weight-balanced data envelopment analysis model[J]. Computers & Industrial Engineering, 2012, 63(2): 513-519. [11] Wang Y M, Chin K S. Some alternative models for DEA cross-efficiency evaluation[J]. International Journal of Production Economics, 2010, 128(1): 332-338. [12] Wang Y M, Chin K S, Luo Y. Cross-efficiency evaluation based on ideal and anti-ideal decision making units[J]. Expert systems with applications, 2011, 38(8): 10312-10319. [13] Lim S. Minimax and maximin formulations of cross-efficiency in DEA[J]. Computers & Industrial Engineering, 2012, 62(3): 726-731. [14] Sun J, Wu J, Guo D. Performance ranking of units considering ideal and anti-ideal DMU with common weights[J]. Applied Mathematical Modelling, 2013, 37(9): 6301-6310. [15] Banker R D. A game theoretic approach to measuring efficiency[J]. European Journal of Operational Research, 1980, 5(4): 262-266. [16] Liang L, Wu J, Cook W D. The DEA game cross-efficiency model and its Nash equilibrium[J]. Operations Research, 2008, 56(5): 1278-1288. [17] Wu J, Liang L, Chen Y. DEA game cross-efficiency approach to olympic rankings[J]. Omega, 2009, 37(4): 909-918. [18] Wu J, Liang L. A multiple criteria ranking method based on game cross-evaluation approach[J]. Annals of Operations Research, 2012, 197(1): 191-200. [19] Lotfi F H, Jahanshahloo G R, Hemati S. A new bargaining game model for measuring performance of two-stage network structures[J]. International Journal of Research in Industrial Engineering, 2012, 1(2): 27-39. [20] 张启平,刘业政,李勇军.考虑受益性的固定成本分摊DEA纳什讨价还价模型[J].系统工程理论与实践,2014,34(3):756-768. [21] 孙加森.数据包络分析(DEA)的交叉效率理论方法与应用研究[D].合肥:中国科学技术大学,2014. [22] Yang F, Xia Q, Liang L. DEA cross efficiency evaluation method for competitive and cooperative decision making units[J]. Systems Engineering-Theory & Practice, 2011, 1: 011. [23] Cooper W W, Park K S, Yu G. An illustrative application of IDEA(imprecise data envelopment analysis)to a Korean mobile telecommunication company[J]. Operations Research, 2001, 49(6): 807-820. [24] 赵海霞,蒋晓威,崔建鑫.泛长三角地区工业污染重心演变路径及其驱动机制研究[J].环境科学,2014,11:4387-4394. [25] 宋静,王会肖,刘胜娅.基于ESI模型的经济发展对生态环境压力定量评价[J].中国生态农业学报,2014,22(3):368-374. [26] 王文治,陆建明.外商直接投资与中国制造业的污染排放:基于行业投入-产出的分析[J].世界经济研究,2011,(8):55-62. |